Construction and Central Pattern Generator-Based Control of a Flipper-Actuated Turtle-Like Underwater Robot
نویسندگان
چکیده
This paper deals with the construction and control of a turtle-like underwater robot with four mechanical flippers. Each flipper consists of two joints generating a rowing motion by a combination of lead-lag and feathering motions. With cooperative movements of four flippers, the robot can propel and maneuver in any direction without rotation of its main body and execute complicated three-dimensional movements, including ascending, submerging, rolling and hovering. The control architecture is constructed based on a central pattern generator (CPG). A model for a system of coupled nonlinear oscillators is established to construct a CPG and has been successfully applied to the eight-joint turtle-like robot. The CPGs are modeled as nonlinear oscillators for joints and inter-joint coordination is achieved by altering the connection weights between joints. Rowing action can be produced by modulating the control parameters in the CPG model. The CPG-based method performs elegant and smooth transitions between swimming gaits, and enhanced adaptation to the transient perturbations due to nonlinear characteristics. The effectiveness of the proposed method is confirmed via simulations and experimental results. © Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
منابع مشابه
Dynamics, Stability Analysis and Control of a Mammal-Like Octopod Robot Driven by Different Central Pattern Generators
In this paper, we studied numerically both kinematic and dynamic models of a biologically inspired mammal-like octopod robot walking with a tetrapod gait. Three different nonlinear oscillators were used to drive the robot’s legs working as central pattern generators. In addition, also a new, relatively simple and efficient model was proposed and investigated. The introduced model of the gait ge...
متن کاملCPG-based Control of a Turtle-like Underwater Vehicle
We present a new bio-inspired control strategy for an autonomous underwater vehicle by constructing coupled nonlinear oscillators, similar to the animal central pattern generators (CPGs). Using contraction theory, we show that the network of oscillators globally converges to a specific pattern of oscillation. We experimentally validate the proposed control law using a turtle-like underwater veh...
متن کاملDolphin-like Swimming Modeling for a Biomimetic Amphibious Robot ⋆
Abstract: This paper focuses on a dolphin-like swimming hydrodynamics problem for a biomimetic amphibious robot capable of both fishand dolphin-like swimming modes. A Lagrangian reduction has been established in terms of rigid-body dynamics. For robust gait control, a central pattern generator-based approach is incorporated into the model serving as explicit joint angle control. Consequently, a...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Robotics
دوره 23 شماره
صفحات -
تاریخ انتشار 2009